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A theory of finite-amplitude secondary flow between concentric rotating 
cylinders has been published by Davey (1962). A necessary feature of the theory 
is the generation of harmonics of the spatial periodicity in the axial direction of 
the velocity field. A method has been devised to measure the amplitude of each 
harmonic separately and experimental results for the fundamental and first three 
harmonics are presented here for Taylor numbers up to 100 times the critical 
value. The agreement with Davey’s theory is excellent, and the agreement 
extends far beyond the range where the theory is expected to be valid. It is 
shown that all the harmonics are in phase with the fundamental. This result 
requires that jets and shock-like structure must be present in the velocity field. 

1. Introduction 
The nature of the flow regime between the laminar region and the region of 

fully developed turbulence, commonly termed secondary or transitional flows, is 
very poorly understood. Most of the work in this area of research both theoretical 
and experimental is concentrated on studying either the first transition from 
laminar flow or the turbulent region. Yet for many applications in geophysics 
and probably many in engineering also, the regime is that of secondary flow. 

Due to the complexity of the problem, it is best to confine investigations of 
transitional flows to situations where the boundary conditions have a high order 
of symmetry. Not all cases are admissible, for it is possible for the velocity field to 
change directly from the laminar to the turbulent condition without any inter- 
vening secondary (e.g. circular Poiseuille flow). The arrangement which has the 
simplest geometry and yet has an extended region of transition consists of concen- 
tric rotating cylinders. This is the famous Taylor double-cylinder problem (Taylor 
1923). The research described below is an experimental investigation of the 
Taylor problem (circular Couette flow) in the region above the first transition. 

Considerable theoretical work has been applied in studying circular Couette 
flow. Linearized stability theory has been used to predict the transition to the 
first secondary mode for various conditions of rotation, various clearance ratios, 
and for several additional imposed conditions, such as axial flow. Theory, in each 
case, also predicts the wave-form and wavelength of the disturbance at transition. 
The experimental results are in excellent agreement with the theory in every 
instance. Linear stability as applied to the Taylor problem has been reviewed 
thoroughly by Chandrasekhar (1961) and more recently by Di Prima (1963). 
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When the amplitude of secondary flow becomes finite and the linearized theory 
ceases to hold, the non-linearity of the governing equations has prevented 
theoretical progress in all problems of this sort from being either rapid or wide- 
spread. However, a few investigations based on a perturbation from the linearized 
solution have been successful in predicting the observed results so long as these 
are confined to the vicinity of the neutral curve. At present the most notable 
theoretical paper which presents quantitative results on the finite-amplitude 
Taylor problem is by Davey (1962). The calculations of Davey are based on 
methods developed by Stuart (1958, 1960) and by Watson (1960). 

The features of the stability problem which are the results of non-linearity are: 
the distortion of the mean velocity profile; and the generation of harmonics of 
the spatial periodicity. Davey (1962) computed the distortion of the mean, the 
amplitude of the velocity field of the fundamental Taylor vortex, and the ampli- 
tude of the first harmonic for three cases: (1) a wide gap with only the inner 
cylinder rotating; ( 2 )  a narrow gap with only the inner cylinder rotating; and 
(3) a narrow gap with the outer cylinder rotating at  nearly the speed of the inner 
cylinder. He has assumed that the disturbances are axisymmetric. In  the case of 
the narrow gap this assumption is true only a few per cent above the neutral 
curve. Therefore, cases (2) and (3) cannot be expected to agree well with experi- 
ment except very close to the critical Taylor number q. To the authors’ know- 
ledge, Davey’s case (1) is the only quantitative prediction of finite-amplitude 
effects for the double-cylinder apparatus which can be expected to agree with 
experiment over an extended range. The data presented in this paper shows that 
Davefs calculations are in excellent agreement with experimental observations. 
In  fact the agreement is good far beyond the range of Taylor numbers over which 
the theory might be expected to apply. 

Several experimental investigations reported in the literature bear on the 
present problem. Coles (1965) has shown that secondary flow occurs over a large 
range of Taylor numbers and that the prevalent wave-form in a narrow gap has 
azimuthal dependence. He has also shown that hysteresis can occur between 
transitions from one wave-form to another. 

The distortion of the mean flow may be measured by observing the torque on 
one of the cylinders. Torque measurements have been reported by Wendt (1933), 
by Taylor (1936), and by Donnelly (1958). The available data has been compiled 
and critically compared in a review by Donnelly & Simon (1960). Davey has 
compared his computations with the torque data of Donnelly (1958) and finds 
good agreement. 

The other predicted quantities of the theory, the amplitudes of the funda- 
mental and the harmonics, have been tested in part by Donnelly & Schwartz 
(1965) using the ion method. This instrument measures the radial component of 
the velocity field at  the outer cylinder. The work carried out with the ion 
technique may be considered incomplete in three aspects: first, the published 
results apply to a narrow-gap apparatus where the onset of non-axisymmetric 
modes follows close above the neutral curve. It will be shown in a subsequent 
paper that the amplitude of circulation in a Taylor cell in the vicinity just below 
the onset of a new mode is strongly affected by the anticipation of the transition. 
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In  the reference under consideration, the region of influence of the wave transi- 
tion includes as much as half the range investigated. The case of a wide gap where 
this difficulty is not encountered is not reported because the ion current becomes 
too small to measure. 

Secondly, the ion method gives a relative-not absolute-indication of the 
velocity. Quoting in part from Donnelly & Schwartz (1965): ‘Since the charge of 
the double layer, Q is not known independently, we have made no attempt to 
assess the absolute magnitude of A, or its variation from one set of cylinders to 
another. Daily variations in sensitivity made such absolute comparisons com- 
pletely unreliable’. Accordingly, the data obtained by the ion method must be 
fitted to the predicted curve at one point. 

Finally, the velocity amplitudes measured by the ion method have not been 
analysed into Fourier components. The quantity which is shown on the graphs 
of Donnelly & Schwartz (1965) as A, is the total peak-to-peak amplitude of the 
velocity profile as the detector is moved axially through one wavelength. As long 
as the amplitude is small, A, accurately represents the amplitude of the funda- 
mental, but when distortion due to higher harmonics is evident, A,  (as used by 
Donnelly & Schwartz 1965) no longer agrees with the definition used by Davey 
(1962). The peak-to-peak amplitude may be either larger or smaller than the 
fundamental depending on the phase difference of the harmonics. 

In  the research reported here the measuring instrument is the hot thermistor 
anemometer developed by the authors (Lambert, Snyder & Karlsson 1965). The 
output of this device is related to the total shear relative to the surface where the 
detector is located. It is possible to calibrate the anemometer in absolute units. 
This instrument has been used to measure the amplitude of the fundamental and 
the three lowest harmonics of the spatial periodicity of Taylor vortices. For all 
the data presented here, the ratio of the radii of the inner to outer cylinder 
RJR, is one-half. Only the inner cylinder is rotated, the range of Taylor numbers 
is up to l O O T , ,  where T,  is the critical number for the onset of secondary flow. 

The body of this report includes a section outlining the relevant parts of 
Davey’s theory, a section on the equipment and its calibration, an explanation 
of the data taking and data reduction procedure, a description of the results, and 
finally a discussion of the results in terms of jets and shock waves. Some pre- 
liminary results of this research have been published (Lambert, Snyder & 
Karlsson 1964). 

2. Summary of the theory 
Davey (1962) uses the full non-linear equations of motion and assumes the 

velocity is axisymmetric and periodic in z. Using a method similar to that of 
Stuart (1960) and Watson (1960), Davey shows that there is a formal expansion 
of each of the components in powers of a time-dependent function A(t)  multiplied 
by a function of the radial co-ordinate. Thus, each component of the velocity is 
completely separable in terms of its independent variables. The amplitude 
function is itself determined by a series 

= c ~ + a , A ~ + a , A ~ +  .... 1 dA 
A d t  

35-2 
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In  the limit of small A, A cc eUt so that CT is the amplification rate of the linearized 
problem. The coefficients a, are constants. If the series for the velocity com- 
ponents is carried to order AZm, the parameter that must be small for the expan- 
sion to converge is mcr. To first order A,, the equilibrium value of A ( t )  as t-+co, 
has the value A: = ( - cr/a,) (1 + O(A:)>. 

In  cylindrical co-ordinates ( r ,  0, z )  with the rotational axis in the z-direction, 
the velocity components (u, v, w) have the form 

v = ~ ( r )  + A2fi(r) + A4f2(r) + . . . + A{vl0(r) + A2wl,(r) + A4v1,(r) + . . .> coshx 

+ A2(v,,(r) + A2v,,(r) + . . .} cos 2hz 

+ A3{V3,(r) + . . .> COS 3hz + . . ., (2.2) 

where the laminar flow is written v(r),  the terms inf,(r) represent the distortion 
of the mean motion, and h is the wave-number of the disturbance. Note that the 
axial periodicity of the linearized solution requires that the non-linear terms in 
the motional equations generate spatial harmonics of the basic periodicity. The 
functional form of the u component is similar to v except that the terms w(r) and 
f,(r) are omitted. The w component is like u except that the axial dependence is 
in sin nhz instead of cos nhz. 

The infinite set of differential equations which results from inserting equations 
(2.1), (2.2), and the corresponding expansions for u and w into the equations of 
motion involves, after some reduction, unm(r), vnm(r) and f,(r). Fortunately, the 
perturbation scheme is consistent so that the data necessary to solve the nth 
order set of equations is provided by the next lower order. Davey (1962) has 
computed ul0, vl0, uz0, wzo, and the first three derivatives of each together withf, 
and its first derivative. In  calculating these functions to first order in CT (as Davey 
has done) it is within the approximation to take CT = 0 and this procedure has 
been followed. Davey's computations are complete to order CT and provide a pre- 
diction of the distortion of the mean, the amplitude of the fundamental disturb- 
ance, and the amplitude of the first harmonic to order A:. For fixed R,/R2, 
Q2/Rl, and A, both A, and cr are functions only of the Taylor number. Davey has 
shown that with R,/R, = 8, Cl,/Q, = 0 ,  and h = 3.163/R1 (the wave-number of 
the linear theory) that the critical Taylor number is T, = 33,062, 

and 

CT = 13*44( 1 - T,/T), 

A: = 0.09017(1- T,/T). 

The Taylor number for the problem has been defined as 

T = (64/9) ( Q1/v)' R:. (2.5) 

How far above T, this theory is applicable will be discussed later. 
The anemometers used in these experiments are sensitive to the shear at the 

wall. To compare our data with that of Davey (1962) we must find the total shear 
at r = R, (the location of the anemometer). The shear has two components, and 
from equation (2.2) and a similar equation for w we find: 
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and the total shear is 

where v is the kinematic viscosity and R is the Reynolds number (R = Q,Rt/v). 
Using the tables of Davey (1962) and equations (2.6) to (2.8) we have computed 

S for a fixed value of A, at 28 equally spaced values of z throughout one period of z. 
The resulting curve is Fourier analysed and recorded. This procedure is applied 
to successive values of A, and the result is a table of Fourier components of the 
shear as functions of A,. From equation (2.4) and these tables the graphs of the 
theory used below are formed. 

It should be noted that 8 can be made dimensionless by scaling with l/O1, thus, 
S/Q,  is independent of the dimensions of the apparatus and the fluid used. The 
measurable shear scales as v/R:. We have presented our results for the generation 
of harmonics in the form of a Fourier series as follows: 

m 

n=O 
S/Q, = C A,cosnhz. (2.9) 

The values of A ,  and h as functions of T are the quantities measured and reported 
in the next sections. It is not possible to write a simple relation between the An's 
and A ,  which will hold when (5" - T,)/T is not small: in comparing our results with 
the predictions we have not attempted to calculate A,  from the An's because of 
the inordinate amount of computations which are necessary. The good agree- 
ment with Davey's prediction (1962) of the shear shows that the value he used for 
A,  and the assumed solution must be correct. 

3. Equipment 
3.1. Description 

The rotating cylinder apparatus and the temperature control system were 
described in a previous paper, Snyder & Karlsson (1964). It is sufficient, then, 
to list the parameters which enter into the following computations. The radii of 
the inner and outer cylinders are R, = 3-140 f 0.002 cm and R, = 6.295 f 0.002 cm 
respectively, and the length of the cylinders is 90 and 95 em respectively. 

All data were taken under isothermal conditions and the temperature was 
maintained at 24.5 "C. The maximum difference in temperature between any pair 
of thermal baths was kept to less than 0.02 "C. Thermal gradients of this order of 
magnitude are not expected to affect the result significantly, Snyder & Karlsson 
(1964,1965), Karlsson & Snyder (1965). To prevent appreciable zero drift of the 
thermistor response the long-term thermal stability of the working fluid must be 
about f 0.003 "C. This degree of regulation was achieved over periods of 4 h. 

The fluid consisted of solutions of glycerol. The kinematic viscosity was varied 
from 0.009 to 0.215 Stokes using different ratios of glycerine and water. Before 
and after each set of readings with a particular fluid, the viscosity was measured 
with a Cannon-Fenske viscometer. 
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The design and operating characteristics of the anemometers and the associ- 
ated circuitry together with the theory of their operation have already been 
reported by Lambert et al. (1965). There are three thermistors located on the 
outer surface of the inner cylinder. Two are a t  the same horizontal level at  30 em 
from the bottom of the inner cylinder and are separated in arc by 45"; the other 
is in a vertical line 2.30 em above one of the lower thermistors. Three channels 
of electronics are operated simultaneously and the outputs are recorded in 
synchronism so that phase shifts may be measured conveniently. The Taylor cells 
are swept past the detector with a small axial flow (axial Reynolds number of 
order one). This arrangement makes i t  possible to infer the axial drift rate, the 
azimuthal drift rate, the azimuthal wave-number, and the wavelength of the cells 
from the recorder tracer. 

3.2. Calibration 

The theory of operation of the anemometer has been worked out by Niiler (1965) 
and has been modified for the particular application described here by Lambert 
et al. (1965). Let AT represent the excess temperature of the thermistor above the 
ambient a t  a distance far from the thermistor when there is not shear. Also, let 
6T represent the change in AT due to shear. Then it is shown in the latter reference 
that 

6TjAT = as).  (3.1) 
surface 

The constant a is known in terms of the properties of the fluid and the thermistor 
(see equation ( 7 )  of Lambert et al. 1965). However, equation (3.1) holds only 
when S is sufficiently large; but for all data reported in this paper, this condition 
is fulfilled. 

Calibration of the anemometer requires knowledge of three constants, each of 
which must be evaluated a t  the operating point: (1) the constant a of equation 
(3.1); (2) the sensitivity of the thermistor, y = SR/RST where SR is the change in 
resistance of the thermistor; and (3) the total gain of the electronic system k,,  
from the input to recorded output. 

The electronic gain is easily measured by first balancing the bridge (see 
figure 2 of Lambert et al. 1965), and then measuring the deflexion of the recorder 
for various settings of the decade resistance box. The curve relating the recorder 
deflexion to the out of balance resistance is linear to within 1 yo over the range 
used in these experiments and the slope is k,. The value of k,  is checked a t  
intervals of about 1 h while the apparatus is in operation. The gain varies by less 
than 3 yo from hour to hour. 

The sensitivity of the thermistor is the slope of the resistance vs temperature 
curve at the operating point. We have calculated y from known characteristic 
curves and the value for the thermistor which is used for quantitative data is 

To find a it is necessary first to find AT for various inputs of power. Knowing 
k,  and y, it  is possible to measure AT vs power input by noting the recorder 
deflexion for various values of current to the thermistor. These measurements 
are carried out with the fluid at rest. Heating curves have been drawn for two 
cases: when the fluid is (1)  a 72 yo glycerine in water solution; and (2) air. Both 

y = 11441K". 
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curves are linear to within 1 yo to well above the operating range. The slope in 
case (1) is 0.335 "C/mW and in case (2) is 0.370 "C/mW. We can conclude from the 
small difference of the slopes between curves (1) and (2) that most of the heat is 
conducted to the wall and only a small fraction (about 2mW out of 1SmW) to 
the fluid. In  deriving equation (10) of Lambert et al. (1965)) it is assumed that 
most of the heat flows to the wall. 

Having determined k,, y ,  and AT, it is possible to find a by measuring the 
recorder deflexion for different amounts of shear. The calibration is made in the 
region of laminar flow where the shear can be calculated. A large range of shear 
with laminar profile can be achieved if both cylinders are rotated. The resulting 
curve of 6T/AT vs S is linear on a log-log plot with a slope of 113. The curve is 
linear to about 2 % except for small values of S where the assumptions made in 
deriving equation (3.1) are violated. The value of a depends upon the properties 
of the fluid and it can be shown that for two different fluids aoc kP8, where k is 
the thermal conductivity of the fluid and P is its Prandtl number. We have 
determined a empirically from the curves representing equation (3.1). 

Typical values of the design parameters at our operating point are: 
(a )  total power input, 18mW; ( b )  power transmitted to the fluid, 2mW; 

( c )  excess temperature AT = 6°C; ( d )  S just below critical, 4/sec; (e )  limit of 
applicability of equation (3.1), AS' = 3/sec; (f)  a z 2.4 x 

4. Procedure 
4.1. Data taking 

At the beginning of each run the temperatures of the three thermal baths are 
adjusted so that the apparatus is isothermal at  24.5 "C. The speed of the inner 
cylinder is set to correspond to the desired value of the Taylor number. The axial 
flow is fixed to give an axial Reynolds number (R,  = VR,/v where V is the 
average velocity) of 2-25. The same value of R, is maintained for all the runs. 
Taylor cells are swept past the anemometer by the axial flow and the recorder 
responds to the changing value of the shear. Figure 1 shows some actual recorder 
traces. 

The signal to the recorder can be digitalized by a voltage-to-frequency con- 
verter and counter. The digitalized output is displayed on a print out and may be 
transferred to punched cards for entry into a computer. After the recorder trace 
has been steady for about 2 min, sections of the trace are recorded in digital form. 
The standard procedure is to print out six complete cycles of the wave-form for 
each Taylor number. 

The outputs of all three anemometers are recorded continuously and simul- 
taneously. It is necessary to synchronize the time base of the three traces about 
once an hour. A continuous record of the temperature at  various points in the 
thermal baths is also maintained. The raw data consists of the six cycles of 
recorder trace from one of the anemometers which has been digitalized (for each 
Taylor number), the three recorder traces, the dimensions of tho apparatus, and 
the properties of the fluid. 
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FIGURE 1. Reco der traces of the total shear at  the inner cylinder at increasing values of 
the Taylor number. The cells are moved past the detector. Values of (1 - T,/T) are: (A) 0.02, 
(B) 0.09, (C) 0.43, (D) 0.70, and (E) 0.99. The amplitude scale is 1/2 for (C) through (E). 

4.2. Data reduction 

The wavelength of the disturbance is determined by comparing the recorder 
traces of the two anemometers which are in a vertical line. The distance between 
the anemometers is less than a wavelength of the disturbance. If the phase 
difference of the two traces is measured in time units as t ,  and the distance 
between the two detectors is I, then the drift velocity of the disturbance is 
V, = tl/l. Note that V, is not necessarily equal to since the disturbance is a wave 
motion. The velocity V ,  can be combined with the time t ,  required €or a complete 
cycle to pass either anemometer to yield the wavelength of the disturbance: 
2n/h = Gt2. Generally, the points on the graphs of h which follow, are the average 
values of six determinations. 

The first step in finding the harmonic amplitudes of the wave-form is to convert 
the digitalized recorder output into values of shear. There is usually a long-term 
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drift of the zero point of the recorder due to drifts in the mean temperature of the 
working fluid. Therefore, only the ax .  part of the output is used in the calcula- 
tions. Thus, 6T which is directly proportional to the recorder deflexion is made 
up of two parts: 6T = 6T,.,. f dTd.,.. It is necessary to know STd.,. since the relation 
between the shear and 6T is not linear and the range of 6T is large enough so that 
a linear approximation is inappropriate. Fortunately, it  is possible to calculate 
6Td.,. from published data. We have from equation (3.1) 

(4.1) GTd.,./AT = a IdZ/dr - a,[*, 
where 3 is the mean value of v. The quantity IdZlclr- all is measured by the 
torque. Therefore, it is possible to compute IdZ/dr - 0,I as a function of the 
Taylor number from the formulae supplied by Donnelly & Simon (1960) and this 
is the procedure that has been used. 

It is also possible to measure 6Td.,./AT with the thermistor anemometer. 
First, the bridge is balanced with no rotation of the cylinder and the recorder 
zero is noted. Then, the cylinder is set into rotation. The resulting trace has a 
mean value which is offset from the previous recorder zero by an amount pro- 
portional to STd.,/hT. The method of this paragraph eliminates the cumulative 
zero shift due to long-term temperature drift. Several points were checked in this 
manner and were found to be in good agreement with the torque data. We plan 
to use this method to check the torque data more completely in the near future. 

The a.c. part of the recorder deflexion D is related to 6Ta.c. as 6T,.,. = (k , /y )  D 
while 6Td.C. is given by equation (4.1). If equation (3.1) is rewritten as 

S = (uAT)-~ (ST,.,.+ J y d . ~ . ) ~  (4.2) 

it  is evident that all the information needed to find S is on hand. Both a and AT 
may be found from calibration curves as explained in $3.  

The next step is to Fourier analyse S with a computer. Since there is always 
some noise mixed with the output signal and also a long-term drift of the zero 
point, the question arises whether it is possible to reduce the effects of either or 
both these undesirable features by judicious data handling. The level of noise can 
be estimated and reduced by treating N cycles of the recorder trace as a single 
cycle in the computer analysis. If the recorder signal contained no noise, all 
Fourier components of the computer analysis would be zero except those whose 
subscripts were multiples of N .  The magnitude of the components which are 
multiples of N relative to those that are not, is a measure of the signal-to-noise 
ratio. 

The effect of the noise on the computed Fourier components is dependent to 
some extent on the number of data points used per cycle. As the number of points 
is increased, the effect of the noise level is decreased. However, the relation is far 
from linear and there is a point of diminishing return. The choice of N ,  the number 
of recorder traces in each computer cycle, and the total number of digitalized 
points (determined by the sampling rate) was determined empirically. Several 
traces were analysed with varying sampling rates and with N = 2,3,  and 4. By 
comparing the results we conclude that for the noise level of our apparatus it is 
sufficient to take N = 2 and to use a total of fifty points in each analysis. 
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The standard procedure for reducing the data has been to use N = 2 and to set 
the sampling rate so that there is a minimum of fifty data points for one computer 
cycle. Since the sampling rate is maintained constant, the number of points per 
analysis may range up to ninety as the wavelength increases. Suscient trials 
have been made to show that the results are not appreciably effected by the 
number of points used, provided there are at  least fifty in a complete cycle. The 
effect of the zero drift has been reduced by subtracting from each data point 
a quadratic function fitted to the three minimum points of the trace. (The trace 
is considered to begin and end a t  a minimum point; this is the point in the cell of 
maximum shear.) 

The computer program consists of: (1) averaging the points on the trace and 
subtracting the average value from each point; ( 2 )  fitting a quadratic to the three 
minima and subtracting this function from each point; (3) multiplying each point 
by k, /y;  (4) calculating )dG/dr- Q l 1 *  and 13Td.~. from tables supplied; (5) adding 
ST,.,. to JTd.,. and using the result according to equation (4.2) to find S; and 
(6) Fourier analysing S. The fundamental and first three harmonics are desired. 
Accordingly, the computer prints out both in-phase and out-of-phase components 
up to subscript 9, together with useful quantities such as the Taylor number, etc. 
The even components represent the desired Fourier analysis of the shear while the 
odd components measure the noise level. Each computer analysis is checked for 
noise content by comparing the magnitude of the odd and out-of-phase compo- 
nentswith the fundamental. If the signal-to-noise level is less than ten, theanalysis 
is repeated with new data. Since a total of six recorder cycles are digitalized for 
each Taylor number, there is a possibility of three computer analyses on the same 
data. Generally, two out of the three are processed and if the even components 
agree to within 10 % , they are averaged and constitute a data point. If agreement 
is poor the analysis is rejected. 

5. Data 
The wave-number of the disturbance stays fairly constant throughout a large 

range of Taylor numbers. A plot of the wave-number h scaled by the gap width 
R, is shown in figure 2; there is a slight decrease at large values of T.  The syste- 
matic errors in h are considerably smaller than the statistical scatter. The fact 
that the wavelength of the disturbance is not very reproducible from run to run 
is well known (Snyder 1962); the spread found here is of the same magnitude 
reported by others. The uncertainty in h can be taken as the extent of scatter 
shown on the graph. 

The Fourier amplitudes of the shear as defined in equation (2.9) are plotted in 
figures 3-7. Referring to equation (4.2) it  will be seen tha t  the errors in the 
Fourier amplitudes may be quite large because the measured quantities are 
cubed. We can estimate the error in ST as about 3 %  from the scatter; the 
systematic error is less than 1 %. The uncertainty due to scatter in the data is all 
statistical error. An error in aAT of about 3 % is estimated if a is calculated from 
its defining equation. However, this quantity can also be found empirically by 
measurements in the laminar region. The latter procedure has been carried out 
and we estimate a systematic error of 18% in aAT. The error in each point of S 
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FIGURE 2. The dimensionless wave-number of the disturbance as a function of Taylor 
number. The various symbols denote the day on which the data was taken. 

can be as large as 14%. But the Fourier analysis applied here reduces the 
statistical part of the error, and the averaging which results when a smooth line is 
drawn through the scattered points reduces the random error even more. Due to 
the large density of data points in figures 3-7 we believe that the statistical error 
in S has been reduced below 1 %. Accordingly, we feel that the error in a line 
drawn through the data in figures 3-7 is not greater than 8 %. 

FIGURE 3. The amplitude of the fundamental in the Fourier analysis of the shear, A,  ws 
Taylor number. A new symbol is used for each day’s data. The solid line is computed from 
Davey’s tables. 
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FIGURE 7. A comparison of the four Fourier components of the shear A, through A, at  
various Taylor numbers. The curves are smoothed forms of the experimental data on 
figures 3 through 6. 

One out of the three thermistors has been used in taking almost all the data 
relating to amplitude. However, several runs have been made with the two other 
thermistors to show that the results are not dependent on the thermistor used. 
Considering the large systematic error that may occur in S it is encouraging that 
all of the resulting points fall within the scatter shown of figures 3-6. We wish to 
emphasize that there are no adjustable parameters in Davey's theory or in our 
own data. 

Another result of the Fourier analysis is that up to 100% none of the out-of- 
phase components of the harmonics ever become larger than the noise level as 
measured by the odd components. This means that simple Taylor cells are found 
over a very large range of Taylor numbers. Above 100% an azimuthal dependence 
is added to the velocity field of the Taylor cell." The amplitude of the azimuthal 
part is small (of the order of 5 % of the total amplitude), however, up to 500%. 
We have not observed transition to turbulence up to 500T, in this apparatus. 

6. Discussion 
Two arguments against the validity of the experimental data are rather 

obvious. The first is that it  is not evident apriori that the axial flow which is used 
to sweep the cells past the detector will not change these results. In  answer we 
may state that experiments with various values of R, have shown that any effect 
on h and the An's is nearly independent of R, until R, becomes about four times 
as large as the value used here. A detailed account of the Taylor problem with 
axial flow will be given at  a later date. 

* Note added in proof: This has recently been shown to be caused by end effects. 
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A second criticism is that in measuring non-linear harmonic generation it is 
essential to insure that none of the harmonic content is due to the measuring 
instrument. The electronics, the thermistor characteristic, and the relation 
between shear and excess temperature are all non-linear. We have investigated 
the magnitude of harmonic generation in the electronics and the thermistor 
and find it to be negligible compared with hydrodynamic generation. Recall 
that both response curves are linear to 1 %  in the operating range. The non- 
linearity shown by equation (3 .1 )  is compensated for by using (3.1) in the 
computation. 

Davey (1962) made several assumptions in developing his theory. He treated 
h as a constant and neglected all out-of-phase components of the harmonics. Both 
assumptions have been proved correct by the present research. We have seen that 
h is constant up to about 10% within the statistical scatter of the observations. 
At lOOT, the value of h differs from the value at critical A, by only 10 yo. More- 
over, the averaged value of h below 10Tc corresponds to that used by Davey 
(1962). Also, the out-of-phase components of the harmonics are not larger than 
the noise level up to 100Tc. 

To compare the wave-function used by Davey (equation 2.2) with experi- 
ment it is necessary to measure all components of the Fourier series. The torque 
data indicates that the component A ,  is predicted correctly. Our data extends 
the agreement to A, and A,. Experimental observations are on hand in figures 5 
and 6 to compare A, and A, with theory. It would be desirable to extend Davey’s 
computations to order At so that A,  and A, may be compared. Each time the 
theoretical value of a Fourier component is found to agree with reality the degree 
of freedom of the unknown wave-form is reduced. It is difficult already with the 
first three components in agreement to construct a wave-function which is 
smooth and yet differs significantly from the wave-form of equation (2.2). It is 
evident from the agreement of A,, A ,  and A, to large values of T that higher-order 
terms such as a2uI1, etc., must be very small. 

It is interesting to inquire how far up in Taylor number Davey’s theory (1962) 
might be expected to apply. It certainly cannot be good above lOOT, since Davey 
(1962) assumed that the wave-form has no 0-dependence. The expansion method 
used by Davey does not contain a means of deciding what ma should be compared 
with in determining whether it is large or small. Also, it  is not clear theoretically 
if an expansion of a in terms of (T - T,)/Tc or (T - T,)/T converges more rapidly 
at large T .  Davey started with the former expression, which seems more natural, 
and derived a relation for y and A, in terms of T and T, similar to equations (2.3) 
and (2.4). Later he replaced the former by the latter arguing that both are 
equivalent a t  small values of (T - T,) where the theory is expected to hold. If A, 
is calculated for large values of A, using Davey’s original expression, the agree- 
ment with theory holds only near T,; but using equations (2.3) and (2.4) we have 
fair agreement even to lOOT,. It would be desirable to reformulate the theory so 
that (1 - T,/T) is used in all expansions. 

Within our limit of error, Davey’s calculations agree with the experimental 
data up to about 4%. This is probably as far as the theory may be expected to be 
strictly valid. Note that at 4% h2 M a. For large values of T where the theory is 
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not expected to apply the discrepancy between theory and experiment is never 
greater than 40 %. 

The truth of Davey’s assumption that all harmonics of the axial periodicity 
add in phase plays an important role in the physical interpretation of the flow 
field. Davey’s expansion for the velocity components u and v are of the form 
C,B,cosnhz and for the w-component CnC,sinnhz. The expansion for an 
idealized jet in the r or 8 directions centred at  z = 0 has the form of a delta func- 
tion C, cos nhz = &(Ax); the accompanying shock-like structure demanded by 
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PICURE 8. Summation of the harmonics to form jets in the u and v components and shock 
structure in the w component. The amplitudes have been estimated from the experimental 
data and are approximate. 

continuity has the form 2,n-l sin nhx. Visual observations suggest that as 
T +cn it is possible that both u and v are approaching ideal jets and that w is 
a sawtooth wave as a function of z. This would require in Davey’s expansion that 
B,+ 1 and C, 3 l /n  as T -+ 00. Our data shown in figure 7 indicates that the An’s 
approach constant values asymptotically as T+m. If we assume that for 
T 9 T,, B, = 1 and Cn = l/n, then the An’s calculated from equation (2.8) and 
(2.9) are in agreement with the four measured values of A ,  at large T. It does not 
appear that it has been fully appreciated that Davey ’s wave-function allows jets 
and shock-like structure. In  figure 8 the approximate experimental values of the 
first three harmonics are added together for T z 8% to show the build up of jets 
and shocks. (The values of figure 8 are estimated since it is very difficult to get 
the harmonics from the An’s.) 
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The schematic diagram figure 9 shows how a pair of Taylor cells which are 
symmetrical a t  transition are distorted by finite-amplitude effects. The centres 
of circulation in the axial plane of each of the two cells making up a pair move 
closer together as T is increased. The back flow becomes slow and occupies most 
of the cell. The jet is formed a t  the cell boundary and is always outward from the 
inner cylinder-this is in agreement with Davey’s theory. Note that there is also 
a jet in the w direction. It is possible to observe the cells visually using ink as a 
tracer. The streamlines are similar to those shown in figure 9 and the jets are 
quite definite. Since the centrifugal force is the only unsymmetrical force in the 
axial plane, it is probably the cause of the jet. 

3 n / A  - 

2n/A - 

n/h - 

z=o-  

FIGURE 9. A schematic picture of the Taylor cells at about 10T, showing the 
distortion of the cell due to finite-amplitude effects. 

It would be interesting to carry out an analysis of the limiting form of Taylor 
cells as T-t 00. The boundary-layer approach proposed by Batchelor (1956) 
should apply. However, it is now obvious that the cells must be treated in 
pairs-not individually. 

The jet might be expected to produce an excess pressure on the outer cylinder 
where it impinges: the velocity of the jet is of the order of 5 cm/sec (from figure 3 
and actual values of R, and Y) so that the Bernouilli pressure at stagnation should 
be about 0.1 mm of the liquid. An attempt to measure this pressure in another 
Taylor double-cylinder apparatus failed. A standpipe manometer was fitted to 
the outer cylinder of the apparatus. The height of the liquid level between the 
cylinders was adjusted so that the jet was either at the entrance to the standpipe 
or far from it. The differential pressure due to rotation was measured in each case, 
but the effect of rotation was negligible. The noise level was about 0.1 mm so that 
it is not surprising that the result was negative. 
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A few traces of the wave-form such as figure 1 were made with the anemometer 
mounted on the inside of the outer cylinder. The jets were less sharp for cor- 
responding Taylor numbers than those of figure 1. This is in accordance with 
Davey’s computations (1962). It appears that the jet does not exert an appreci- 
able force on the outer cylinder at  the point of impact. 

In  the course of the experiments reported in this paper and in other work with 
this apparatus evidence has frequently appeared which could be construed as 
indicating the existence of another type of instability near T,. The critical Taylor 
number has been determined by plotting A; us T and also A ,  ws T in the vicinity 
of T,. For acceptable data both curves are straight lines and their intercepts with 
the T axis differ by less than 2 % . Using this value for T,, we always find a large 
scatter of points near Tc (up to 3 yo above) on an A ,  us (T - T,) plot. The points 
which do not fall on a smooth curve are consistently high-the cells appear below 
critical or have an amplitude higher than expected. The same effect occurs in the 
data of Donnelly & Schwartz (1965) using the ion technique and also in the torque 
data of Donnelly (1958). We also observe that the wavelength of those cells, 
which appear prematurely, are always considerably larger than (up to two times) 
the observed value of h extrapolated to T, from above would imply. 

7. Conclusion 
These experiments show that the methods of treating finite-amplitude 

secondary flows proposed by Stuart (1958, 1960) and by Watson (1960) and 
applied to the Taylor problem by Davey (1962) yield accurate results. Our data, 
which may be in error by 8 %, agrees with the calculations up to 4T,. Two results 
of this research are important in considerations of geophysical fluid dynamics. 
First, the data proves that secondary flows of simple wave-form can occur over 
very large ranges of Taylor number in rotating systems. Secondly, it  is shown 
that the non-linearity of the equations of motion is a sufficient mechanism to 
produce jets in simple types of fluid flow. 

We wish to acknowledge helpful discussions concerning this work with Dr J. T. 
Stuart, Dr R. C. Di Prima, and Dr L. A. Segel. The apparatus for these experi- 
ments was constructed as a joint venture with Dr S. K. F. Karlsson. The research 
reported in this paper was sponsored in part by The Air Force Cambridge 
Research Laboratories, Office of Aerospace Research, under contract no. 
AP19(628)-4783 and in part by The National Science Foundation under grant 
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